Judgment, Proposition and Sentence from Kant to Husserl

Document Type : علمی - پژوهشی

Authors

Shahid Beheshti University

Abstract

In this paper, we propose a genealogical study concerning the notions of judgment, proposition and sentence and their thematization in logic within the two traditions of logical studies in 19th century. Those two traditions are 1- algebraic tradition for which logic is a kind of algebra and calculus and 2- deductive-theoretic tradition for which deduction is different from calculus and itself serves as a foundation for this latter. We begin with Kant whose attempt to separate logic from metaphysics has had a crucial effect for both traditions and whose investigations on the issues around judgment forms a starting point for the deduction-theoretic tradition. We try to elaborate that how in the one tradition judgment and then proposition are considered as the central themes of logic and in the other tradition sentence, and thus well-formed formula, and the rules concerning them turn out to be the main concern of logic. We study those developments through the ideas of Kant, Bolzano, Boole and Frege; and finally we will survey Husserl’s phenomenological analyses about the aforementioned notions and their place in logic.

Keywords


  1. فرگه گ. مبانی علم حساب، ترجمه طالب جابری، انتشارات ققنوس، 1395
  2. Bellucci, B. and Pietarinen, A-V. Existential graphs as an instrument of logical analysis: Part I. ALPHA. The Review of Symbolic Logic, 9(2):209-237, 2016.
  3. Boole, G. The Mathematical Analysis of Logic, Being an Essay towards a Calculus of Deductive Reasoning (London, England: Macmillan, Barclay, & Macmillan, 1847.
  4. Boole, G. An Investigation of the Laws of Thought. Walton & Maberly, 1854.
  5. Carroll, L. What the Tortoise Said to Achilles. Mind. 104 (416): 691–693, 1895.
  6. Cobb-Stevens R. Husserl’s Theory of Judgment: A Critique of Brentano and Frege. In: Husserl’s Logical Investigations Reconsidered, D. Fisette ed. 115-163, Springer, Dordrecht. 2003
  7. Føllesdal D. Husserl und Frege: Ein Beitrag zur Beleuchtung der Entstehung der phänomenologishen Philosophie, Viv. Akad.Avh, Oslo, 1958
  8. Frege, G. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. (Translation: Concept Script, a formal language of pure thought modelled upon that of arithmetic, by S. Bauer-Mengelberg in Jean Van Heijenoort, ed., 1967. From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press.) Halle a. S.: Louis Nebert, 1879.
  9. Frege, G. Grundlagen der Arithmetik, Breslau: Marcus, 1884.
  10. Frege, G. Grundgesetze der Arithmetik: Begriffsschriftlich Abgeleitet, Vol. 1, (English trans.(selections), The Basic Laws of Arithmetic, M. Furth, trans. And ed., University of California Press, 1964) Jena: Pohle, 1893.
  11. Frege, G. Book review, of Husserl 1891. Zeitschrift für Philosophie und philosophische Kritik, 103: 313–332, 1894.
  12. Hintikka, J. On the development of the model-theoretic viewpoint in logical theory. Synthese 77, 1-36, 1988.
  13. Husserl, E. Formale und Transzendentale Logik, ed. P. Janssen, volume XVII of Husserliana. Martin Nijhoff, The Hague, Netherlands, 1974.
  14. Husserl, E. Formal and Transcendental Logic, trl. D. Cairns. Martin Nijhoff, The Hague, Netherlands, 1969.
  15. Husserl, E. Experience and Judgment, trl. J. Churchill, and K. Ameriks. Routledge, London, 1973.
  16. Husserl, E. A review of volume I of Ernst Schröder’s vorlesungen über die algebra der logik. In D. Willard, editor, Early Writings in the Philosophy of Logic and Mathematics, volume 5 of Edmund Husserl Collected Works, pages 52–91. Springer Science+Business Media, Dordrecht, 1994.
  17. Husserl, E. Logical Investigations (2 vols.) trl. J. Findlay, ed. D. Moran. Routledge, London, 2001.
  18. Husserl, E. Philosophy of Arithmetic, trl. D. Willard. Kluwer Academic Publishers, Dordrecht, 2003.
  19. Kant, I. Logique. Traduction par L. Guillermit, Vrin, 1982.
  20. Kant, I. Theoretical Philosophy 1755-1770, edited ant translated by D. Walford. New York 1992.
  21. Kant, I. 1781/7. Critique of Pure Reason. Translation by P. Guyer and A. Wood, Cambridge, 1998.
  22. Kern, I. Husserl und Kant, Martinus Nihoff, 1964.
  23. Leibniz, G. Philosophical Papers and Letters, Ed. L. E. Loemker. Kluwer Academic Publishers, Dordrecht, 1989.
  24. Lenzen, W. Leibniz’s Logic, in D. Gabbay & J. Woods (eds.) The Rise of Modern Logic – From Leibniz to Frege (Handbook of the History of Logic, vol. 3), Amsterdam (Elsevier), 1-83. 2004.
  25. Lotze, H. Logic, in three books: of Thought, of Investigation, and of Knowledge (1874), ed. and trans. B. Bosanquet, Oxford: Clarendon Press, 1884; 2nd edition, 1887.
  26. Martin-Löf, P. Intuitionistic Type Theory. Bibliopolis, 1984.
  27. Mohanty J. Husserl And Frege: A New Look at Their Relationship, In Readings On Edmund Husserl's Logical Investigations, J. Mohanty (ed.), 22-33, Mar Tinus Nijhoff / The Hague, 1977.
  28. Schröder, E. Vorlesungen über die Algebra der Logik, 3 vols. Leipzig: B.G. Teubner, 1890.
  29. Sundholm B.G. A Century of Judgment and Inference: 1837-1936. In: Haaparanta L. (Ed.) The Devlopment of Modern Logic. Oxford: Oxford University Press. 263-317, 2009
  30. Parkinson, G.H.P. Leibniz, Logical Papers. Oxford: Clarendon Press, 1966
  31. Peano, J. The principles of arithmetic, presented by a new method, (reprinted in Jean van Heijenoort, 1967. A Source Book in Mathematical Logic, 1879–1931. Harvard Univ. Press: 83–97), 1889.
  32. Peirce, C. S. On the Algebra of Logic. A Contribution to the Philosophy of Notation. American Journal of Mathematics7, pp. 197–202, 1885.
  33. Peirce, C. S. (ed.) Studies in Logic by Members of the Johns Hopkins University. Boston: Little, Brown, and Co. 1883.
  34. Tarski, A. Über den Begriff der logischen Folgerung, in Actes du Congrès International de Philosophie Scientifique, fasc. 7 (Actualites Scientifiques et Industrielles, vol. 394), Paris: Hermann et Cie, pp. 1–11. (Translated into English in Tarski 1956), 1936.
  35. Tarski, A. “On the Concept of Logical Consequence”, translation by J.H. Woodger in Logic, Semantics, Metamathematics, pp. 409–20. 1956.
  36. van Heijenoort, J. ed., From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931. Harvard University Press, 1967a.
  37. van Heijenoort, J. Logic as calculus and logic as language. Synthese 17, 324-330, 1967b.
  38. Whitehead A. N. and Bertrand Russell, Principia Mathematica, 3 vols, Cambridge: Cambridge University Press. 1910, 1912, 1913.
  39. Willard, D. Husserl’s Critique of Extensionalist Logic, Idealistic Studies 9 (2):143-164, 1979